On the discretization in time of parabolic stochastic partial differential equations
نویسنده
چکیده
We first generalize, in an abstract framework, results on the order of convergence of a semi-discretization in time by an implicit Euler scheme of a stochastic parabolic equation. In this part, all the coefficients are globally Lipchitz. The case when the nonlinearity is only locally Lipchitz is then treated. For the sake of simplicity, we restrict our attention to the Burgers equation. We are not able in this case to compute a pathwise order of the approximation, we introduce the weaker notion of order in probability and generalize in that context the results of the globally Lipschitz case. Mathematics Subject Classification. 60H15, 60F25, 60F99, 65C20, 60H35. Received: July 24, 2000. Revised: January 8, 2001; September 17, 2001.
منابع مشابه
APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES
We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.
متن کاملAn inverse problem of identifying the coefficient of semilinear parabolic equation
In this paper, a variational iteration method (VIM), which is a well-known method for solving nonlinear equations, has been employed to solve an inverse parabolic partial differential equation. Inverse problems in partial differential equations can be used to model many real problems in engineering and other physical sciences. The VIM is to construct correction functional using general Lagr...
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملA Finite Element Method for Martingale-driven Stochastic Partial Differential Equations
The main objective of this work is to describe a Galerkin approximation for stochastic partial differential equations driven by square– integrable martingales. Error estimates in the semidiscrete case, where discretization is only done in space, and in the fully discrete case are derived. Parabolic as well as transport equations are studied.
متن کاملSome a Priori Error Estimates for Finite Element Approximations of Elliptic and Parabolic Linear Stochastic Partial Differential Equations
We study some theoretical aspects of Legendre polynomial chaos based finite element approximations of elliptic and parabolic linear stochastic partial differential equations (SPDEs) and provide a priori error estimates in tensor product Sobolev spaces that hold under appropriate regularity assumptions. Our analysis takes place in the setting of finitedimensional noise, where the SPDE coefficien...
متن کاملImplicit Space-Time Domain Decomposition Methods for Stochastic Parabolic Partial Differential Equations
We introduce and study parallel space-time domain decomposition methods for solving deterministic and stochastic parabolic equations. Traditional parallel algorithms solve parabolic problems time step by time step. The parallelism is restricted to each time step, and the algorithms are purely sequential in time. In this paper, we develop some overlapping Schwarz methods whose subdomains cover b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Monte Carlo Meth. and Appl.
دوره 7 شماره
صفحات -
تاریخ انتشار 2001